Locally connected spanning trees on graphs

نویسندگان

  • Ching-Chi Lin
  • Gerard J. Chang
  • Gen-Huey Chen
چکیده

A locally connected spanning tree of a graph G is a spanning tree T of G such that the set of all neighbors of v in T induces a connected subgraph of G for every v ∈ V (G). The purpose of this paper is to give linear-time algorithms for finding locally connected spanning trees on strongly chordal graphs and proper circular-arc graphs, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

An Optimal Algorithm for Finding Locally Connected Spanning Trees on Circular-Arc Graphs

Suppose that T is a spanning tree of a graph G. T is called a locally connected spanning tree of G if for every vertex of T , the set of all its neighbors in T induces a connected subgraph of G. In this paper, given an intersection model of a circulararc graph, an O(n)-time algorithm is proposed that can determine whether the circular-arc graph contains a locally connected spanning tree or not,...

متن کامل

Homeomorphically Irreducible Spanning Trees in Locally Connected Graphs

A spanning tree T of a graph G is called a homeomorphically irreducible spanning tree (HIST) if T does not contain vertices of degree 2. A graph G is called locally connected if for every vertex v ∈ V (G), the subgraph induced by the neighborhood of v is connected. In this paper, we prove that every connected and locally connected graph with more than 3 vertices contains a HIST. Consequently, w...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.DS/0409013  شماره 

صفحات  -

تاریخ انتشار 2004